A Novel Thresholding Technique for Adaptive Noise Reduction using Neural Networks

نویسندگان

  • G. Sambasiva Rao
  • C. NagaRaju
  • S. Reddy
چکیده

The speckle corrupted image is a traditional problem in both biomedical and in synthetic aperture processing applications, including synthetic aperture radar (SAR). In a SAR image, speckle manifests itself in the form of a random pixel-to-pixel variation with statistical properties similar to those of thermal noise. Due to its granular appearance in an image, speckle noise makes it very difficult to visually and automatically interpret SAR data. Therefore, speckle filtering is a critical preprocessing step for many SAR image-processing tasks, such as segmentation and classification. Wavelet multiresolution analysis has the very useful property of space and scale localization, so it provides great promise for image feature detection at different scales. The recent wavelet thresholding based denoising methods proved promising, since they are capable of suppressing noise while maintaining the high frequency signal details. However, the local space-scale information of the image is not adaptively considered by standard wavelet thresholding methods. In standard wavelet thresholding based noise reduction methods, the threshold at certain scale is a constant for all wavelet coefficients at this scale. In this paper varies thresholding techniques have been studied for adaptive noise elimination and we presented a new type of thresholding neural network (TNN) structure for adaptive noise reduction, which combines the linear filtering and thresholding methods. This method produced better results than traditional methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thresholding neural network for adaptive noise reduction

In the paper, a type of thresholding neural network (TNN) is developed for adaptive noise reduction. New types of soft and hard thresholding functions are created to serve as the activation function of the TNN. Unlike the standard thresholding functions, the new thresholding functions are infinitely differentiable. By using the new thresholding functions, some gradient-based learning algorithms...

متن کامل

Space-scale adaptive noise reduction in images based on thresholding neural network

Noise reduction has been a traditional problem in image processing. Recent wavelet thresholding based denoising methods proved promising, since they are capable of suppressing noise while maintaining the high frequency signal details. However, the local space-scale information of the image is not adaptively considered by standard wavelet thresholding methods. In this paper, a new type of thresh...

متن کامل

Noise and Speckle Reduction in Doppler Blood Flow Spectrograms Using an Adaptive Pulse-Coupled Neural Network

A novel method, called adaptive pulse coupled neural network (AD-PCNN) using a two-stage denoising strategy, is proposed to reduce noise and speckle in the spectrograms of Doppler blood flow signals. AD-PCNN contains an adaptive thresholding PCNN and a threshold decaying PCNN. Firstly, PCNN pulses based on the adaptive threshold filter a part of background noise in the spectrogram while isolati...

متن کامل

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)

Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009